Nephrology and Transplantation Department Labbafinejad Medical Center

Shahid Beheshti University of Medical Sciences

Social Security Organization of Islamic Repoblic of Iran

Complement Inhibition in Kidney Transplantation

Shiva Samavat Associate Professor of Nephrology Shahid Beheshti University of Medical Sciences Labbafinejad Medical Center

Tabriz , Iran 19-22 November 2019

OUTLINE

- Complement inhibitors have been studied in:
 - I/R injury
 - Antibody-mediated rejection
 - Prevention of AMR in highly sensitized patients
 - Cell-mediated rejection
 - Recurrence of diseases that primarily involve the alternate pathway
 - Antiphospholipid syndrome

J Am Soc Nephrol 28: 2571-2578, 2017

Tabriz, Iran 19-22 November 2019

al Society of Rephrology Transa

national Society of Rephrology Iranian Society of Nephrology

IPNA

A phase I/II, double-blind, placebo-controlled study assessing safety and efficacy of C1 esterase inhibitor for prevention of delayed graft function in deceased donor kidney transplant recipients

- Recipients of kidney allografts from:
 - ECD (or KDPI score ≥ 85) donors,
 - DCD donors
 - DCD who have risk index of 3 to 8 (minimum 3 and maximum 8) for DGF

35 patients in each arm

Am J Transplant. 2018;18:2955-2964.

Am J Transplant. 2018;18:2955–2964.

Patients at highest risk for DGF (Kidney Donor Profile Index \geq 85) benefited most from C1INH therapy.

Am J Transplant. 2018;18:2955-2964.

ClinicalTrials.gov

RUCONEST® as a Therapeutic Strategy to Reduce the Incidence of Delayed Graft Function

ClinicalTrials.gov Identifier: NCT03791476

Recruitment Status (1): Recruiting First Posted (1): January 1, 2019 Last Update Posted (1): June 25, 2019

See Contacts and Locations

CINRYZE as a Donor Pre-treatment Strategy in Kidney Recipients of KDPI>60%

ClinicalTrials.gov Identifier: NCT02435732

Recruitment Status ①: Not yet recruiting First Posted ①: May 6, 2015 Last Update Posted ①: October 30, 2019

See Contacts and Locations

BRIEF COMMUNICATION

Peritransplant eculizumab does not prevent delayed graft function in deceased donor kidney transplant recipients: Results of two randomized controlled pilot trials

First published: 26 August 2019 | https://doi.org/10.1111/ajt.15580

Eculizumab	Placebo
Participants received 2 doses of eculizumab: the first dose	Participants received 2 doses of placebo (0.9% sodium
was just prior to reperfusion of the allograft and the second	chloride [NaCl]): the first dose was just prior to reperfusion of
dose was within 18 to 24 hours (h) of completion of	the allograft and the second dose was within 18 to 24 h of
administration of the first dose. Each dose of eculizumab was	completion of administration of the first dose. Each dose of
administered by intravenous (IV) infusion over 25 to 45	placebo was administered by IV infusion over 25 to 45 min.
minutes (min). The first dose was 1200 milligrams (mg) in 240	The first dose was 240 mL of 0.9% NaCl; the second dose
milliliters (mL) (5 mg/mL); the second dose was 900 mg in 180	was 180 mL of 0.9% NaCl.
mL (5 mg/mL).	

ClinicalTrials.gov Identifier: NCT02145182 (Accessed November 6,2019)

	Eculizumab	Placebo
Number of participants	142	144
DGF composite	35.9	41.7
DGF	33.8	39.6
Death	0.0	1.4
Graft loss	0.7	3.5
Graft survival at 6 months	94.89	90.96
Graft survival at 12 months	92.66	88.69
Serious Adverse events	92/142 (64.79%)	102/146 (69.86%)

The incidence of DGF, death, graft loss, or loss to follow-up at 7 days posttransplant was 35.9% on treatment, compared to 41.7% for patients receiving placebo (p = 0.398). Nephron 2019;143:193–196

ClinicalTrials.gov Identifier: NCT02145182 (Accessed November 6,2019)

ClinicalTrials.gov

A Study of the Activity of Eculizumab for Prevention of Delayed Graft Function In Deceased Donor Kidney Transplant

ClinicalTrials.gov Identifier: NCT01403389

Recruitment Status (): Terminated (After interim analysis, the pilot study was terminated and modified to a larger multicenter study (NCT01919346) to better assess efficacy.) First Posted (): July 27, 2011 Last Update Posted (): May 6, 2019

Eculizumab for Prevention of Delayed Graft Function (DGF) in Kidney Transplantation

ClinicalTrials.gov Identifier: NCT01919346

Recruitment Status () : Terminated (Based on results from Alexion PROTECT DGF study) First Posted () : August 9, 2013 Last Update Posted () : February 27, 2018

 Based on these results, it seems that prevention of DGF requires proximal complement inhibition (at or prior to the C3 convertase step).

Drug	Description of the drug	Mechanism of action	Phase of clinical development
sCR1, TT10	Soluble form of recombinant CR1	Inactivation of C3b	Inconclusive results in cardiac surgery
APT070, Mirococept	Truncated CR1 with lipopeptide membrane	Inactivation of C3b	Clinical trial for preventing ischemia- reperfusion injury in the kidney allograft
	Eurian protain between ((D) / EU and ((D) / (D)	Inactivation of Ch	Draclinical

A double-blind randomised controlled investigation into the efficacy of Mirococept (APT070) for preventing ischaemia reperfusion injury in the kidney allograft (EMPIRIKAL): study protocol for a randomised controlled trial

Recruitment is completed No result posted yet

Unpublished personal data

MAYO CLINIC

al Society of Rephrology Transar

C1 Inhibitor in Acute Antibody-Mediated Rejection Nonresponsive to Conventional Therapy in Kidney Transplant Recipients: A Pilot Study

American Journal of Transplantation 2016; 16: 1596–1603

	N40	N4+0	
	MO	M+6	
	n = 6	n = 6	p-value
Characteristics of anti-HLA DSA			
Number, mean \pm SD	2.0 ± 0.6	2.0 ± 0.6	_
HLA class specificity, n (%)			_
HLA class I	2 (33.3)	2 (33.3)	
HLA class II	3 (50.0)	3 (50.0)	
HLA class I + II	1 (16.7)	1 (16.7)	
MFI sum, mean \pm SE	17 469.0 ± 3833.7	14 872.2 ± 3307.9	0.0277
MFI mean, mean±SE	9806.4 ± 2472.6	10 395.5 \pm 3071.1	0.9165
Clinical characteristics			
eGFR (mL/min/1.73 m ²), mean \pm SD	38.7 ± 17.9	45.2 ± 21.3	0.0277
Proteinuria (g/g), mean \pm SD	0.5 ± 0.4	0.7 ± 0.6	0.2059
Histological characteristics (Banff scores)			
g + ptc score, mean \pm SD	3.7 ± 1.0	3.0 ± 1.1	0.1585
i + t score, mean \pm SD	0.3 ± 0.8	0	0.3173
v score, mean \pm SD	0.2 ± 0.4	0	0.3173
cg score, mean \pm SD	0.3 ± 0.5	0.5 ± 0.5	0.3173
IF/TA score, ean \pm SD	1.2 ± 0.4	1.7 ± 1.0	0.4235
cv score, mean \pm SD	1.2 ± 0.4	1.5 ± 0.5	0.1573
C4d deposition, n (%)	5 (83.3)	1 (16.7)	0.0455

 Table 3:
 Immunological, clinical, and histological changes between M0 and M+6 in C1-INH patients

American Journal of Transplantation 2016; 16: 1596–1603

Plasma-Derived C1 Esterase Inhibitor for Acute Antibody-Mediated Rejection Following Kidney Transplantation: Results of a Randomized Double-Blind Placebo-Controlled Pilot Study

Placebo	CINRYZE
Participants received an intravenous (IV) infusion of normal	Participants received an intravenous (IV) infusion of human C1
saline, at a rate of approximately 1 mL per minute as	esterase inhibitor (CINRYZE) at a rate of approximately 1 mL
tolerated, 7 times over a 2-week period: an initial infusion on	per minute as tolerated. Participants received a total of 7
Day 1, followed by infusions on Days 3, 5, 7, 9, 11, and 13.	doses over a 2-week period: an initial IV infusion of 5000 U
	(not to exceed 100 U/kg) on Day 1, followed by 2500 U (not to
	exceed 50 U/kg) IV on Days 3, 5, 7, 9, 11, and 13.

A 2-week course of C1- INH (Cinryze, Shire Pharmaceuticals) as an add-on therapy to SOC plasmapheresis and low-dose IVIg, compared to SOC alone.

American Journal of Transplantation 2016; 16: 3468-3478

	Placebo (n = 9)				n-value fo		
Histopathology end point	Qualifying biopsy	Day-20 biopsy	Change	Qualifying biopsy	Day-20 biopsy	Change	treatment
C4d score							
$Mean\pmSD$	60.8 ± 41.2	15.8 ± 32.9	-45.0 ± 46.9	68.7 ± 41.8	32.6 ± 39.1	-36.1 ± 33.4	0.6498
Margination score							
$Mean \pm SD$	23.0 ± 24.8	17.0 ± 25.8	-6.0 ± 14.0	9.2 ± 15.2	21.8 ± 29.3	12.6 ± 25.9	0.0768
Glomerulitis score							
Mean \pm SD	17.0 ± 24.9	23.7 ± 30.9	6.7 ± 26.6	16.3 ± 23.4	19.0 ± 28.8	2.7 ± 13.6	0.6928
Vasculitis score							
Mean \pm SD	3.9 ± 7.8	0 ± 0.0	-3.9 ± 7.8	0 ± 0.0	3.2 ± 6.4	3.2 ± 6.4	0.0508
Glomerulosclerosis score							
Mean \pm SD	4.2 ± 6.8	2.8 ± 3.6	-1.4 ± 7.8	8.9 ± 9.6	2.6 ± 4.3	-6.3 ± 7.9	0.2042
Chronic glomerulopathy score							
Mean \pm SD	0.3 ± 1.0	0.6 ± 1.7	0.2 ± 0.7	0 ± 0.0	0 ± 0.0	0 ± 0.0	0.3322
Interstitial fibrosis score							
Mean \pm SD	3.2 ± 6.6	9.1 ± 14.1	5.9 ± 9.8	0.7 ± 1.3	12.2 ± 20.4	11.6 ± 20.9	0.4723
Chronic vasculitis score							
Mean ± SD	8.3 ± 12.8	6.7 ± 11.7	-1.7 ± 18.2	2.6 ± 4.5	5.4 ± 7.7	2.9 ± 9.0	0.5103

Table 4:	Change in	histopathology	scores fror	n qualifying	biopsy to	day-20 biopsy

American Journal of Transplantation 2016; 16: 3468–3478

- C1 INH group demonstrated a trend toward sustained improvement in renal function.
- Six-month biopsies performed in 14 subjects (C1 INH = 7, placebo = 7) showed no transplant glomerulopathy (TG) (PTC+cg≥1b) in the C1 INH group, whereas 3 of 7 placebo subjects had TG.

American Journal of Transplantation 2016; 16: 3468–3478

Anti-C1s monoclonal antibody BIVV009 in late antibodymediated kidney allograft rejection—results from a first-inpatient phase 1 trial

Am J Transplant. 2018;18:916-926.

5-week follow-up biopsies

BIVV009 effectively blocks alloantibody-triggered CP activation, even though short-course treatment had no effect on indices of activity and chronicity of ABMR.

Use of Eculizumab for Active Antibody-mediated Rejection That Occurs Early Post-kidney Transplantation

A Consecutive Series of 15 Cases

Tan, Ek Khoon MBBS¹; Bentall, Andrew MD^{2,3}; Dean, Patrick G. MD^{1,3}; Shaheen, Mohammed F. MBBS¹; Stegall, Mark D. MD^{1,3}; Schinstock, Carrie A. MD^{2,3}

Transplantation: November 2019 - Volume 103 - Issue 11 - p 2397–2404 doi: 10.1097/TP.00000000002639

	Trial	Status
NCT02113891	Eculizumab Therapy for Subclinical Antibody-mediated Rejection in Kidney Transplantation (TAMARCIN)	Withdrawn
NCT01895127	Efficacy and Safety of Eculizumab for Treatment of Antibody-mediated Rejection Following Renal Transplantation	Terminated due to lack of efficacy

Clinicaltrials.gov (Accessed November 6,2019)

• These findings suggest that complement inhibition upstream of C5 with C1 inhibition and blocking the generation of complement activation products of C3 might have crucial role in treatment of AMR .

ClinicalTrials.gov

Efficacy and Safety of Human Plasma-derived C1-esterase Inhibitor as add-on to Standard of Care for the Treatment of Refractory Antibody Mediated Rejection (AMR) in Adult Renal Transplant Recipients

ClinicalTrials.gov Identifier: NCT03221842

Recruitment Status (1): Recruiting First Posted (1): July 19, 2017 Last Update Posted (1): October 2, 2019

See Contacts and Locations

Terminal Complement Inhibition Decreases Antibody-Mediated Rejection in Sensitized Renal Transplant Recipients

Anti-C5 Treatment Protocol

Base- line BFXM against their living donor with a channel shift <450 and ≥ 200 .

MAYO

Tabriz , Iran 19-22 November 2019

Table 2: Posttransplant outcomes in the eculizumab-treated and control groups

Category	Eculizumab group (n = 26) $^{ m His}$	toricalControl group (n = 51)	p-Value
Follow-up	11.8 ± 6.3	48.8 ± 14.1	
(mean months \pm SD, range)	(3.0–27.5)	(7.8–69.8)	
Graft survival at 1 year (n, %)	16/16 (100%)	49/51 (96%)	1.00
Antibody-mediated rejection \leq 3months (n, %)	2 (7.7%)	21 (41%)	0.0031
Patients developing high DSA levels $\leq 3 \text{ months}^1$	13 (50%)	22 (43%)	0.63
High DSA biopsies C4d+ (n, %)	13 (100%)	20 (91%)	0.52
High DSA and C4d+ biopsies showing AMR (n, %)	2 (15%)	20 (100%)	< 0.0001
Cellular rejection \leq 3 months (n, %)	1 (6.2%)	1 (2%)	0.42
Plasma exchange posttransplant			
Patients receiving PE (n, %)	3 (12%)	39 (76%)	< 0.0001
Number of PE treatments (mean \pm SD)	0.35 ± 1.1	7.9 ± 7.5	< 0.0001
Splenectomy (n, %)	0 (0%)	9 (18%)	0.025
Graft dysfunction in first month (mg/dL) (maximum serum creatinine – nadir serum creatinine)	0.45 ± 0.37	0.93 ± 1.15	0.05
Histology at 1 year			
Transplant glomerulopathy incidence (n, %)	1/15 (6.7%)	15/42 (36%)	0.044
Cg score (mean \pm SD)	0.20 ± 0.78	0.74 ± 1.13	0.17
Ci score (mean \pm SD)	1.00 ± 0.76	0.79 ± 0.80	0.31
Ct score (mean \pm SD)	1.13 ± 0.74	0.91 ± 0.80	0.33
Cv score (mean \pm SD)	0.80 ± 0.68	0.59 ± 0.74	0.23

¹B flow crossmatch channel shift >350 at any time point in the first 3 months.

American Journal of Transplantation 2011; 11: 2405–2413

Positive Crossmatch Kidney Transplant Recipients Treated With Eculizumab: Outcomes Beyond 1 Year

American Journal of Transplantation 2015; 15: 1293–1302

Subclinical ABMR in Controls vs. Eculizumab						
	3-4 months	1 year	2 year			
Allec	35.7% (10/28)	36.7% (11/30)	27.3% (6/22)			
Control	46.2% (18/39)	36.8% (14/38)	15.1% (5/33)			
p-value (EC vs. control)	P=0.46	P=1.0	P=0.32			

Transplant Glomerulopathy in Controls vs. Eculizumab							
	3-4 months	1 year	2 year				
Allec	0% (0/28)	26.7% (8/30)	45.4% (10/22)				
Control	9.3% (4/43)	39.5% (15/38)	63.6% (21/33)				
p-value (EC vs. control)	P=0.15	P=0.31	P=0.27				

Despite decreasing acute clinical ABMR rates, EC treatment does not prevent chronic ABMR in recipients with persistently high BFXM after +XMKTx.

American Journal of Transplantation 2015; 15: 1293–1302

Long-term outcomes of eculizumab-treated positive crossmatch recipients: Allograft survival, histologic findings, and natural history of the donor-specific antibodies

+XM kidney transplant recipients who received eculizumab after transplant remained at high risk for CAMR and had similar long-term outcomes as historical +XM control.

Am J Transplant. 2019 Jun;19(6):1671-1683

Safety and efficacy of eculizumab in the prevention of antibody-mediated rejection in living-donor kidney transplant recipients requiring desensitization therapy: A randomized trial

0	Pretreatment		Transpla	antation	Ind	luctio	n pha	se	ſ	Nainte	nance	phas	е
otoce	Neisseria meningitidis	Week			1	2	3	4	5	6	7	8	9
vaccination ≥14 days before transplantation	Day	0	1	7	14	21	28						
	before transplantation	Eculizumab dose, mg	1200	900	900	900	900	900	1200	0	1200	0	1200

Am J Transplant. 2019;19:2876-2888.

MAYO

Am J Transplant. 2019;19:2876-2888.

MAYO CLINIC

76

al Society of Rephrology Transa

IPNA

AMR	Location	End point	Eculizumab (N = 51) n (%)	SOC (N = 51) n (%)	Difference (exact 95% CI)	P value
Grade II or III acute AMR only	Central ^{a,b}	Treatment failure	6 (11.8)	11 (21.6)	-9.8% (-29.6, 10.5)	.288
		AMR	6 (11.8)	9 (17.6)		
		Graft loss	1 (2.0)	4 (7.8)		
		Death	1 (2.0)	1 (2.0)		
		Loss to follow-up	0 (0.0)	0 (0.0)		

TABLE 5 Treatment failure rate (reassessed central and local pathology, with and without grade I antibody-mediated rejection included)

This finding suggests a potential benefit for eculizumab compared with SOC in preventing acute AMR in recipients sensitized to their living-donor kidney transplants.

Loss to tollow up 0 (0.0) 0 (0.0)

Am J Transplant. 2019;19:2876-2888.

Safety and efficacy of eculizumab for the prevention of antibody-mediated rejection after deceased-donor kidney transplantation in patients with preformed donor-specific antibodies Study design

International Congress of Nephrology, Dialysis, and Transplantation Tabriz, Iran 19-22 November 2019

Week

Day

Eculizumab

dose, mg

0

	Week 9 (N = 80)		Month 12 (N = 80))
End point	Treated patients, n (%)	Exact 95% Cl, P value ^c	Treated patients, n (%)	Exact 95% CI
Central pathology				
Treatment failure				
Yes	7 (8.8)	3.6-17.2, <.001	15 (18.8)	10.9-29.0
No	73 (91.3)		65 (81.3)	
Composite end poi	nt component ^a			
Biopsy-proved acute AMR ^d	3 (3.8)		5 (6.3)	
Graft loss	4 (5.0)		10 (12.5)	
Death	1 (1.3)		2 (2.5)	
Loss to follow-up ^b	0 (0.0)		0 (0.0)	
Local pathology				
Treatment failure				
Yes	11 (13.8)	7.1-23.3, <.01	21 (26.3)	17.0-37.3
No	69 (86.3)		59 (73.8)	
Composite end poi	nt component ^a			
Biopsy-proved acute AMR ^d	7 (8.8)		12 (15.0)	
Graft loss	4 (5.0)		10 (12.5)	
Death	1 (1.3)		2 (2.5)	
Loss to follow-up ^b	0 (0.0)		0 (0.0)	

17th ^c*P* value refers to the comparison between the observed treatment failure rate and the 40% treatment failure rate estimated for patients receiving standard of care from a literature search. ^dBanff 2007 grade II or grade III AMR detected in "for-cause" biopsies.

Eculizumab has the potential to provide prophylaxis against injury caused by acute AMR in patients with preformed DSAs.

Am J Transplant. 2019;19:2865-2875.

MAYO

• Pathways "proximal" to C5 might be responsible for subclinical and chronic injury in allograft patients treated with Eculizumab.

A Phase I/II Placebo-Controlled Trial of C1-Inhibitor for Prevention of Antibody-Mediated Rejection in HLA Sensitized Patients

(Transplantation 2015;99: 299-308)

MAYO

(Transplantation 2015;99: 299-308)

* = Non-DSA

No C1-INH patient developed AMR during the study. The C1-INH appears safe in the posttransplant period. The C1-INH treatment may reduce IRI. (1 vs 4) The C1-INH also resulted in reduced C1q+ HLA antibodies.

(Transplantation 2015;99: 299-308)

Tabriz, Iran 19-22 November 2019

SUMMARY

- We are at the beginning of the way to use complement inhibitors in kidney transplantation, but based on available data we could conclude that:
- C1 inhibitors, unlike Eculizumab, seem to affect the outcome of DGF positively.
- C1 inhibitors, and may be Eculizumab, seem to affect the late outcomes of AMR positively.
- Both C1 inhibitors and Eculizumab showed promising results in prevention of AMR among sensitized patients.

British Medical Bulletin, 2017, 124:5–17

Complement Inhibitors

			Complement
Name(s)	Structure	Major targets	Pathways inhibited*
C1 INH (Berinert, Cinryze, Ruconest)		C1r, C1s, MASPs	C, L,
	Natural or Recombinant Glycoprotein		
Nafamostat (FUT-175)	Synthetic guanidinobenzoate (broad spectrum low molecular weight serine protease inhibitor)	C1r, C1s, MASPs, B, D, C2	A, C, L
Compstatin	Synthetic 13 residue cyclic peptide	C3 and C5 convertase	A, C, L
Mirococept/TP-10	Recombinant soluble analogs of type 1 complement receptor	C3b, C3 and C5 convertases	A, C. L
Eculizumab (Soliris)	Humanized monoclonal antibody	C5	A, C, L

A indicates alternate; C, classic; L, lectin.

[Transplantation 2016;100: 1415-1424]

Drug	Description of the drug	Mechanism of action	Phase of clinical development
sCR1, TT10	Soluble form of recombinant CR1	Inactivation of C3b	Inconclusive results in cardiac surgery and in dense deposit disease
APT070, Mirococept	Truncated CR1 with lipopeptide membrane	Inactivation of C3b	Clinical trial for preventing ischemia- reperfusion injury in the kidney allograft
TT30 (Alexion) Mini FH (Amyndas) r FH (Optherion)	Fusion protein between CCP1-4 FH and CCP1-4 CR2 Fusion protein between CCP1-4 FH and CCP19-20FH Purified or recombinant FH	Inactivation of C3b Inactivation of C3b Inactivation of C3b	Preclinical Preclinical Preclinical
Berinert (CSL Behring), Cinryze (ViroPharma)	Purified or recombinant C1 inhibitor	Inactivation of C1	Drug approved for hereditary angioedema, clinical trial in Trx
Eculizumab (Alexion)	Humanized monoclonal IgG2/4 antibody against C5	Inhibition of the cleavage of C5 to C5a and C5b	Drug approved for PNH, aHUS; clinical trials in complement-mediated diseases
Lampalizumab (Roche) AMY-101 or Cp40	Humanized monoclonal antibody directed against factor D Derived product from compstatin: Cyclic	Inhibition of Factor B cleavage within the C3bB Inhibition of the C3 cleavage	Clinical trial in age macular degeneration (Phase 2) Preclinical
(Amyndas) CCX168 (ChemoCentryx) OMS872 (Omeros)	peptide that binds C3 Small-molecule antagonist of human C5aR/CD88, Humanized monoclonal antibody again MASP 2	by the C3 convertase C5a inhibition Inhibition of C4 cleavage	Clinical trial in ANCA-associated renal vasculitis Clinical trial in atypical bleHUS (Phase 2)
ALN-CC5 (Alnylam)	RNAi therapeutic targeting C5	Inhibition of the C5 synthesis by the liver	Preclinical

Kidney International (2015) 88, 967–973; doi:10.1038/ki.2015.253;

Table 2 Current clinical trials of eculizumab and C1-esterase inhibitors in kidney transplantation

Eculizumab

Prevention of delayed graft function (compared with placebo: NCT01756508, NCT01919346, NCT02134314, NCT01403389)

Prevention of acute clinical antibody-mediated rejection:

In living donor kidney transplantation (NCT01399593): patients have been desensitized according to local practice (IVIg, plasma exchange) but without anti-CD20 and then randomized to receive either local practice treatment (IVIg, plasma exchange) or eculizumab for 9 weeks

In deceased donor kidney transplantation (NCT01567085): kidney transplant recipients with anti-HLA donor-specific antibodies (peak or day-0 serum > 3000 MFI) have been given eculizumab for 9 weeks without any control group

Treatment of acute antibody-mediated rejection (NCT01895127): a randomized open label trial comparing eculizumab with plasma exchanges and IVIg in the treatment of acute ABMR

Treatment of subclinical antibody-mediated rejection (NCT02113891). Study withdrawn

Treatment of chronic antibody-mediated rejection (NCT01327573): a randomized open label trial comparing eculizumab with regular immunosuppression Prevention of recurrence in:

C3 glomerulopathy (NCT01221181, NCT02093533): a single-arm study testing the efficacy of eculizumab to treat recurrence of dense deposit disease and C3 glomerulopathy

Antiphospholipid syndrome (NCT01029587): a phase 2 study to prevent thrombosis of the kidney transplant in patients with a catastrophic antiphospholipid antibody syndrome

ABO-incompatible transplantation (NCT01095887): an open label trial aiming at preventing ABMR in ABO-incompatible living donor kidney transplant recipients

C1 esterase inhibitor

Prevention of delayed graft function (NCT02134314) Use of human C1 esterase inhibitor to treat acute ABMR (NCT01147302) Safety and tolerability of Berinert to prevent rejection (NCT01134510)

Abbreviations: ABMR, antibody-mediated rejection; HLA, human leukocyte antigen; IVIg, intravenous immunoglobulin; MFI, mean fluorescent intensity.

Kidney International (2015) 88, 967-973; doi:10.1038/ki.2015.253;

Fibrogenesis & Tissue Repair 2014, 7:16

TABLE 2.

Trials of C1 INH in transplantation listed in clinicaltrials.gov^a

Title	Phase	NCT Number	Туре	Sponsor	Status
C1 INH Preoperative and post-kidney transplant to prevent DGF and IRI	I	02134314	R, PC, DB	Cedars-Sinai Medical Center, Los Angeles, CA	Recruiting
Safety and tolerability of Berinert (C1 inhibitor) therapy to prevent AMR in HLA sensitized kidney transplant recipients	I	01134510	R, PC, DB	Cedars-Sinai Medical Center	Completed ⁶⁷
Recombinant human C1 INH for the treatment of early AMR in renal transplantation	II	01035593	R, OL	Shire, Lexington, MA	Withdrawn ^b
A pilot study to evaluate the use of C1 INH (human) in patients with acute (kidney) AMR	II	01147302	R, PC, DB	Shire, Lexington, MA	Completed ⁶⁸
Combined drug approach to prevent IRI during transplantation of livers	Ι	01886443	SB	Universitaire Ziekenhuisen Leuven, Belgium	Completed
Combined drug approach to prevent IRI during transplantation of livers (CAPITL)	II	02251041	R, SB	Universitaire Ziekenhuisen Leuven, Belgium	Recruiting
Cinryze as a donor pretreatment strategy in kidney recipients of KDPI>85% organs	I	02435732	R, PC,	University of Wisconsin Madison, WI	Not yet recruiting

^a No trials are listed in EUdraCT which are not listed here.

^b Sponsor's comment: "Withdrawn due to Improvements in Clinical Practice (which) Have Reduced The Apparent Incidence of AMR."

R indicates randomized; PC, placebo controlled; DB, double blinded; SB, single blinded (subject); OL, open label.

(Transplantation 2016;100: 1415-1424)

Intervention	Target	Primary end point(s)	Stage and estimated enrollment	ClinicalTrials.gov identifier
I5NP	siRNA inhibiting p53	Safety and incidence of delayed kidney graft function	Phase 2B <i>N</i> = 366	NCT00802347
Eculizumab	Complement C5a	Hemodialysis (7 days post-transplantation)	Phase 2 <i>N</i> = 24	NCT01919346
OPN-305	TLR2	Hemodialysis (7 days post-transplantation)	Phase 2 <i>N</i> = 278	NCT01794663
BB3	Hepatocyte growth factor/scatter factor	Difference in creatinine clearance over time	Phase 2 <i>N</i> = 36	NCT01561599
Remote ischemic preconditioning	Multiple	Number of organs recovered per donor	Phase 3 <i>N</i> = 320	NCT01515072
Hypothermia	Multiple	Feasibility/safety; recipient organ function	Phase 2 <i>N</i> = 60	NCT01544530
Alteplase	Dissolution of microthrombi by <i>ex-vivo</i> treatment of DCD organs with rTPA	Delayed kidney graft function and primary liver graft non-function	N = 135	NCT01197573
Etanercept	TNF- α inhibitor to the perfusion fluid	Hemodialysis (7 days post-transplantation)	Phase 2 <i>N</i> = 100	NCT01731457

Table 2 | Selected registered randomized and controlled DGF trials in ClinicalTrials.gov (accessed 3 September 2013)^a

Abbreviations: DGF, delayed graft function; siRNA, small interfering RNA; TLR, Toll-like receptor; TNF, tumor necrosis factor. ^aExcluding trials testing preservation solutions and machine perfusion.

Am J Transplant. 2018;18:2955-2964.

MAYO CLINIC

7-6

nal Society of Rephrology Iranian Society of Nep

IPNA

• C1 inhibitors, unlike Eculizumab, seem to affect the outcome of DGF positively.

• The ongoing trials (NCT02435732; NCT03791476) would shed a light on their efficacy in prevention of DGF.

TABLE 2.

Trials of C1 INH in transplantation listed in clinicaltrials.gov^a

Title	Phase	NCT Number	Туре	Sponsor	Status
C1 INH Preoperative and post-kidney transplant to prevent DGF and IRI	Ι	02134314	R, PC, DB	Cedars-Sinai Medical Center, Los Angeles, CA	Recruiting
Safety and tolerability of Berinert (C1 inhibitor) therapy to prevent AMR in HLA sensitized kidney transplant recipients	I	01134510	R, PC, DB	Cedars-Sinai Medical Center	Completed ⁶⁷
Recombinant human C1 INH for the treatment of early AMR in renal transplantation	II	01035593	R, OL	Shire, Lexington, MA	Withdrawn ^b
A pilot study to evaluate the use of C1 INH (human) in patients with acute (kidney) AMR	II	01147302	R, PC, DB	Shire, Lexington, MA	Completed ⁶⁸
Combined drug approach to prevent IRI during transplantation of livers	I	01886443	SB	Universitaire Ziekenhuisen Leuven, Belgium	Completed
Combined drug approach to prevent IRI during transplantation of livers (CAPITL)	II	02251041	R, SB	Universitaire Ziekenhuisen Leuven, Belgium	Recruiting
Cinryze as a donor pretreatment strategy in kidney recipients of KDPI>85% organs	Ι	02435732	R, PC,	University of Wisconsin Madison, WI	Not yet recruiting

^a No trials are listed in EUdraCT which are not listed here.

^b Sponsor's comment: "Withdrawn due to Improvements in Clinical Practice (which) Have Reduced The Apparent Incidence of AMR."

R indicates randomized; PC, placebo controlled; DB, double blinded; SB, single blinded (subject); OL, open label.

(Transplantation 2016;100: 1415-1424)

Complement system

American Journal of Transplantation 2016; 16: 1596–1603

	Trial	Status
NCT02113891	Eculizumab Therapy for Subclinical Antibody-mediated Rejection in Kidney Transplantation (TAMARCIN)	Withdrawn
NCT01895127	Efficacy and Safety of Eculizumab for Treatment of Antibody-mediated Rejection Following Renal Transplantation	Terminated due to lack of efficacy
NCT01035593	Recombinant Human C1 Inhibitor for the Treatment of Early Antibody-Mediated Rejection in Renal Transplantation	Withdrawn
NCT02547220	A Multicenter Study to Evaluate the Efficacy and Safety of Cinryze® for the Treatment of Acute Antibody- mediated Rejection in Participants With Kidney Transplant	Terminated due to lack of efficacy

Clinicaltrials.gov (Accessed November 6,2019)

Early Subclinical Alloantibody-Associated Injury in Positive Crossmatch Kidney Transplantation (+XMKTx) Despite Terminal Complement Blockade.: Abstract# 703

Dean, P.; Park, W.; Cornell, L.; Schinstock, C.; Stegall, M.

Transplantation: July 15, 2014 - Volume 98 - Issue - p 79

- AMR in the first 3 months was lower in the EC group than the PE-alone group (6.7% vs. 43.8%, p<0.01).
- During EC treatment, well-functioning +XMKTx showed LM evidence of microvascular inflammation (PTC score >1) at 1 month (10%) and 3 months (26.7%).
- These data suggest that microvascular inflammation and endothelial cell activation are independent of C5 and that additional therapies likely will be needed to prevent chronic antibody-associated allograft damage.

JKG ©2018Mount Sinai Health System

MAYO

- Direct effect on T-cell proliferation and activity (C3a and C5a, MCP/ CD46) (11, 110)
- The influence on T-cell differentiation and regulatory T cell induction (C3a, C5a, C4, C1q, DAF/CD55) (11, 107, 104, 105)
- The influence on monocyte infiltration (C5aR) (100)

Clin Lab Med
(2018)

https://doi.org/10.1016/j.cll.2018.10.004

nal Society of Rephrology Iranian Societ

Complement 5a Receptor Inhibition Improves Renal Allograft Survival

Faikah Gueler,* Song Rong,* Wilfried Gwinner,* Michael Mengel,^{†‡} Verena Bröcker,[†]

Figure 1. C5aR expression in human renal allograft rejection. (A) C5aR expression in proximal and distal tubuli of normal protocol biopsies. (B) C5aR expression in interstitial infiltrating cells of cases with TCMR Banff Ib. (C) Tubular C5aR expression in cases with IF/TA.

J Am Soc Nephrol 19: 2302–2312, 2008. doi: 10.1681/ASN.2007111267

C5aR blockade markedly reduced alloreactive T cell priming. C5aR plays an important role in mediating acute kidney allograft rejection, suggesting that pharmaceutical targeting of C5aR may have potential in transplantation medicine.

J Am Soc Nephrol 19: 2302-2312, 2008. doi: 10.1681/ASN.2007111267

- Direct effect on cells (MAC) (135)
- Enhancement of T-cell response (MAC) (127)
- Pro-inflammatory stimulation (C3a, C5a) (135)
- The influence on IgG antibody production (CR1, CR2) (124)

Clin Lab Med ∎ (2018) ∎-∎

https://doi.org/10.1016/j.cll.2018.10.004

A Phase I/II Placebo-Controlled Trial of C1-Inhibitor for Prevention of Antibody-Mediated Rejection in HLA Sensitized Patients

Tabriz, Iran 19-22 November 2019

TABLE 4 Primary end point as determined by the central pathologists

	Eculizumab (N = 51) n (%)	SOC (N = 51) n (%)	Difference (exact 95% CI)	P value
Composite primary end point				
Treatment failure rate (including grades II and III AMR)	5 (9.8)	7 (13.7)	-3.9% (-23.9, 16.3)	.760
Composite primary end point components				
Acute AMR (grade II or III)	5 (9.8)	5 (9.8)		
Graft loss	0 (0.0)	3 (5.9)		
Death	1 (2.0)	1 (2.0)		
Loss to follow-up	0 (0.0)	2 (3.9)		

Am J Transplant. 2019;19:2876-2888.

• C1 inhibitors, and may be Eculizumab, seem to affect the late outcomes of AMR positively.

• The ongoing trial (NCT03221842) would shed a light on its efficacy in treatment of AMR.

Subclinical ABMR in Controls vs. Eculizumab							
3-4 months 1 year 2 year							
AllEC	35.7% (10/28)	36.7% (11/30)	27.3% (6/22)				
Control	46.2% (18/39)	36.8% (14/38)	15.1% (5/33)				
p-value (EC vs. control)	P=0.46	P=1.0	P=0.32				

Subclinical ABMR over time in Eculizumab group								
	1 3-4 6 1 2 years							
AllEC	21.4% (6/28)	35.7% (10/28)	48.3% (14/29)	36.7% (11/30)	27.3% (6/22)			
Continued EC	21.4% (6/28)	66.7% (6/9)	66.7% (6/9)	25.0% (2/8)	NA			
Discontinued EC	NA	21.1% (4/19)	40.0% (8/20)	40.9% (9/22)	NA			
p-value	NA	P=0.03	P=0.26	P=0.67	NA			

American Journal of Transplantation 2015; 15: 1293–1302

Transplant Glomerulopathy in Controls vs. Eculizumab				
	3-4 months	1 year	2 year	
Allec	0% (0/28)	26.7% (8/30)	45.4% (10/22)	
Control	9.3% (4/43)	39.5% (15/38)	63.6% (21/33)	
p-value (EC vs. control)	P=0.15	P=0.31	P=0.27	

Transplant glomerulopathy over time in Eculizumab group						
	1 month	3-4 months	6 months	1 year	2 years	
AllEC	0% (0/30)	0% (0/28)	10.3% (3/29)	26.7% (8/30)	45.4% (10/22)	
Continued EC	0% (0/30)	0% (0/9)	22.2% (2/9)	50.0% (4/8)	NA	
Discontinued EC	NA	0% (0/19)	5.0% (1/20)	18.1% (4/22)	NA	
p-value	NA	P=1.0	P=0.22	P=0.16	NA	

American Journal of Transplantation 2015; 15: 1293–1302

17th International Congress of Nephrology, Dialysis, and Transplantation Tabriz , Iran 19-22 November 2019

Baseline IgG3 positivity, BFXM \geq 300 and class I+II DSA were associated with allograft loss. C1q positivity was also associated with allograft loss but did not reach statistical significance.

Am J Transplant. 2019 Jun;19(6):1671-1683

MAYO CLINIC

IPNA

I International Congress of Nephrology, Dialysis, and Transplantation

Tabriz , Iran 19-22 November 2019

Am J Transplant. 2019 Jun;19(6):1671-1683

MAYO CLINIC

76

al Society of Rephrology Iranian Society of Neo

IPNA

17th International Congress of Nephrology, Dialysis, and Transplantation Tabriz , Iran 19-22 November 2019

Am J Transplant. 2019 Jun;19(6):1671-1683

17th International Congress of Nephrology, Dialysis, and Transplantation Tabriz , Iran 19-22 November 2019 Letter takened with takened wit

Am J Transplant. 2019 Jun;19(6):1671-1683

MAYO CLINIC

76

al Society of Rephrology Iranian Society of Neo

IPNA

17th International Congress of Nephrology, Dialysis, and Transplantation Tabriz , Iran 19-22 November 2019 Eculizumab-treated +XM patients had reduced allograft survival compared with -XM controls but similar survival to +XM controls.

• BFXM and complement- activating DSA (by IgG3 and C1q testing) may be used for risk stratification in +XM transplantation.

- C3a is a potent chemotactic molecule that may stimulate an inflammatory response in the allograft independent of the blockade of C5.
- Complement deposition (C4d+ staining) and complement binding DSA (C1q+), both relevant to activation of the proximal complement pathway, have been associated with chronic ABMR.

ISRCTN49958194 https://doi.org/10.1186/ISRCTN49958194 An investigation into the treatment of the donor kidney to see if this improves the recovery of the kidney after transplantation

Condition category	Prospective/Retrospective
Injury, Occupational	Prospectively registered
Diseases, Poisoning	Overall trial status
Date applied	Completed
15/06/2012	Recruitment status
Date assigned	No longer recruiting
03/08/2012	
Last edited	
21/05/2019	

Use of Eculizumab for Active Antibody-mediated Rejection That Occurs Early Post-kidney Transplantation

A Consecutive Series of 15 Cases

Tan, Ek Khoon MBBS¹; Bentall, Andrew MD^{2,3}; Dean, Patrick G. MD^{1,3}; Shaheen, Mohammed F. MBBS¹; Stegall, Mark D. MD^{1,3}; Schinstock, Carrie A. MD^{2,3}

Transplantation: November 2019 - Volume 103 - Issue 11 - p 2397–2404 doi: 10.1097/TP.00000000002639

Conclusions. Prompt eculizumab treatment as primary therapy is safe and effective for early active AMR after kidney transplant or abrupt increases in donor-specific antibodies when biopsy cannot be performed for diagnosis confirmation.

Results. Fifteen patients had early active AMR at a median (interquartile range [IQR]) of 10 (7–11) days posttransplant and were treated with eculizumab \pm plasmapheresis. Thirteen cases were biopsy proven, and 2 cases were presumed on the basis of donor-specific antibody trends and allograft function. Within 1 week of treatment, the median estimated glomerular filtration rate increased from 21 to 34 mL/min (*P* = 0.001); and persistent active AMR was only found in 16.7% (2/12) of biopsied patients within 4–6 months. No graft losses occurred, and at last follow-up (median [IQR] of 13 [12–19] mo), the median IQR estimated glomerular filtration rate increased to 52 (46–60) mL/min.

MAYO CLINIC

60

IPNA

IS

anal Society of Rephrology Iranian Society of Nephrolog